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The Quotient-Difference Algorithm and the 
Pade Table: An Alternative Form 
and a General Continued Fraction 

By J. H. McCabe 

Abstract. The quotient-difference algorithm is applied to a given power series in a modified 
way, and various continued fractions provided by the algorithm are described in terms of their 
relationships with the Pade table for the power series. In particular a general continued 
fraction whose convergents form any chosen combination of horizontal or vertical connected 
sequences of Pade approximants is introduced. 

1. Introduction. In [4] Gragg gives a substantial review of some of the properties of 
the Pade table for a given power series Ek= o k and the relations between Pade 
approximants and other areas of numerical analysis. The earliest and, as Gragg 
suggests, perhaps the most significant of these related areas is the theory of 
continued fractions. In particular it is the so-called corresponding fractions for the 
power series that then provide the link between the Pade table and the quotient-dif- 
ference algorithm of Rutishauser. One of the many applications of the quotient- 
difference algorithm is to obtain the coefficients of the corresponding fractions from 
those of the power series, and the convergents of these continued fractions form 
staircases in the Pade table for the series. 

In this paper the quotient-difference algorithm is taken in a form that is slightly 
different from the usual and is then used to provide, very simply, the coefficients of 
six types of continued fractions whose convergents form ordered sequences of Pade 
approximants, including those mentioned above. It is then shown that the table of 
coefficients generated by the revised quotient-difference algorithm also provide the 
partial numerators and denominators of a 'general' continued fraction whose 
convergents are a sequence of Pade approximants that is made up of any chosen 
horizontal or vertical connected subsequences. This freedom in choosing the path in 
the Pade table means that some of the existing algorithms based on particular paths 
can be regarded as special cases of the revised quotient-difference algorithm. Two 
such instances are described. 

The revised quotient-difference algorithm used in this paper is essentially the 
algorithm that has already been used to construct the continued fractions whose 
convergents form the so called two-point Pade table for two given power series, the 
only difference being the necessity for an additional rule for defining certain 
coefficients in the absence of a second series. However, by looking at the case where 
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some coefficients of a second series are available we see in the final section that the 
two point Pade table for two series is, in a sense, a limiting case of the usual Pade 
table for the sum of the two series. 

2. The q-d Algorithm and the Pade Table. The Pade table [see Figure 1] of the 
formal power series 

k00 (1) f(x) = E C/kX, c0 #& 0, 

is an infinite two-dimensional array of irreducible rational functions 

(2) Pnm(X) = la + a1x + +am Xm (z') P,,.(x) 1 +13x + +f31Xn m, n O, 

in each of which the coefficients are such that the expansion of P,,1n1(x) in powers of 
x agrees with f(x) as far as possible. The power series, and its associated Pade table, 
are said to be normal if, for each m and n, 

m+n 

Pn m(X) = CkXk + higher order terms. 
k =() 

In this case every element of the table exists and differs from any other, and both a,, 
and fgn are nonzero. A sufficient condition for the series to be normal is that the 
determinant 

Cr-s+ ICr-s+2 r 

Cr-s+2 Cr-s+3 r * C 

r . r+ s-I 

is nonzero for all r and s, with Ck = 0 if k < 0. We will assume that the series (1) is 
normal. 

Po0o P10o P2,0 P3,() ... - 
... 

PO,1 P,1 P21, P3,1 
* 

P, 
, 

PO02 P1,2 P2,2 P3,2 
.. 

Pn,2 
... 

PO,m Pi,m P2,m P3,m ... m 

FIGURE 1. The Pade table 
The relationships between the Pade table for the series (1) and various continued 

fractions that correspond to the series are well known. There are many algorithms 
for constructing continued fractions whose convergents form ordered sequences in a 
normal Pade table. Perhaps the most fundamental of these is the quotient-difference 
algorithm of Rutishauser. 

The coefficients of the series are used to provide the starting values 

(3) ql} = CjlC, j 0, 

for the recurrence relations 

(4a) ei = ef+'1 + qJ+1/ I-q/ 1 2..., 
(4b) qJ= q+'* ej+' eif i 1,2,33,. 
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where ei = 0 for all values of j. These rhombus rules allow the calculation of those 
elements of the q-d array on and below the diagonal with zero superfix, see Figure 2. 

0o q-1 -2 ... 

0 - -1 - 

1 0 31 
... eo e-1 

1 q q1 q0 

2 3 el eo 

3 2 

e3 2 2 e1 4 3 

4 3 

5 

FIGURE 2. The q-d array 

The staircase sequence of Pade approximants PO,k Pik, k P,k P2,kI P2,k 2 

are the successive convergents of the continued fraction 

(5) cO +CkX k qkx ekx qkx e2x qkx 
() co +clIx +..+ 1- -1.--..* 

for k = 0, 1,2,3, . The convergents of all these fractions thus provide those 
elements of the Pade table on and below the first upper para-diagonal. The 
remaining elements are the convergents of the continued fractions, of the form (5), 
that correspond to the reciprocal series of (1), i.e. series 'CLX , where 

(kzOckxk) 

( 

I 

jxi) = 1. 

k=0 j=0 

The coefficients of these continued fractions, qJ and eJ, can be obtained by first 
extending the q-d array for (1) to negative values of j by using (4) and then 

(6) qo q= ,q 

q%'iJ el+J, e%' =i q+j, 

where the indices can take all values for which at least one of the elements involved 
is defined. These relations are given by Henrici [5]. Thus the q-d algorithm (4) can 
provide continued fractions which in turn yield all the elements of the Pade table. 

3. An Alternative Form of the q-d algorithm. Set dl = -cj/cj- I for j = 1, 2,..., 
and use these ratios as starting values for the rhombus rules 

(7a) ni+= ni+ +di di' 1 
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for 1, 2, 3, ... with ni = O for all i and 

(8) d' = -nl 

for i 2, 3, 4,.. The elements generated form the n-d array shown in Figure 3. 

dl n' d2 n' d' ... 

d2 n2 d2 n2 d2 2 

d, n2 d2 n d33 ... 

FIGpURE 3. The n-d array 

The convergents of the continued fraction 
k nkx nk 

(9) c0?c1x?.*.? CkX 2__ f3X (9) Co + lx + * +I + d kX + I + d kX + I + d kX + 

k = 1, 2, 3,..., are the Pade approximants PI,k -, P2,k- , P3,k-I P4,k - .., that is 
those on the (k - I)th row of the Pade table. Continued fractions of the form (9) are 
called M fractions for the series (1). 

The above properties, with the exception of (8), follow from [8], where the even 
extensions of (9) are considered. The continued fraction (9) is the even part of 

(10) co + clx + + kX mlx l2 mkx 13 mkx 1 + I+TI+ I+TI+ I+ 
whose coefficients can be obtained by the further set of rhombus rules, 

(Ila) mj * IJ l = lj * mIj, 

( lb) (I + ij) * m I+ = (I + _I) * minK 

for i, j = 1, 2,.. ., with 1 = m -Cj/C, j = 1, 2,. . ., and 

(12) ml n ii=1*2,3,.... 

See McCabe [8] for details. The continued fractions (10) are, in [8], called Perron 
fractions for the series (1), and the convergents of (10) are the sequence PO, k P, k- I 

1,0 P2,k-I 2,k 3,k-' P3,k' * in the Pade table. 
The coefficients of the corresponding fractions (5), (9) and (10) can of course be 

expressed in terms of each other. Specifically 

(13a) ni = _ej+l-i 

(13b) di = elj+ I qlj-' 

for i, = 1, 2, 3,. .., and 

(14a) l (? 

(14b) mi ( + 

fori, j= 1,2,3,.... 
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Substituting for 1i, mlj_ and lj_ I from (14) in (12) yields 

n'+d',l_ 

and equating this to (14b) withj 1 gives the result (8). The alternate version of the 
q-d algorithm, as given by Eqs. (7), was first obtained in a study of two-point Pade 
approximations by McCabe [7]. The rhombus rules (1 1) were also given by Busson- 
nais [2]. 

The relations (13) are such that many of the characteristics of the quotient 
difference algorithm are retained by the alternate form. In particular the conver- 
gence of the n columns of the n-d table to zero and of the d columns to the inverse 
poles of f(x), multiplied by -1, will result if the columns of the q-d array converge to 
zero and to the inverse poles of f(x), respectively. 

4. Two Further Continued Fractions. The convergents of the three forms of 
continued fraction encountered so far form, respectively, staircase sequences, row 
sequences and 'sawtooth' sequences in the Pade table, the latter being of the form 

PI k-I P2,k-1 P3k-I 4,k-I 

PO,k PL,k P2,k P3,k P4,k 

for some k. 
Two additional continued fractions whose convergents form ordered sequences in 

the Pade table can be obtained by a simple re-ordering of the convergents of the 
Perron fraction (10). We have the following general result. 

Let the convergents of the continued fraction 

(15) al a2 a3 a4 a, 
T + T + T +T+T+ 

be A1/B,, A2/B2, A3/B3,..., and let the continued fraction whose convergents are 
those of (15) with the (4k - I)th and (4k - 2)th convergents interchanged for all 
k 2 1, that is the sequence 

Al A3 A2 A4 A5 A7 A6 A8 
B I B3 B2 ' B4 5 B 7 D B6 8 

be 

a, a2 a3 a4 

bl + b2 + b3 + b4 

Then a = a,, bl I and 

a4k-3 -a4k-3a4k4 bk-3 = 1 + a4k-3, k 1, 

a4k2 = a4k-2 bk-2 = 1 + a4k-I k , 1, 

a4kI I -a4k-1, b4k = 1, k 9 1, 
a4k' , bk=a4k, k 1. 
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The left-hand relations imply that 

a4k a4k-1 a4k-2 4k-3 = a4k-a4k-2a4k-3a4k-4 

for k = 2, 3,.. ., while aIaIaI aI = -a3a2a . These relations are easily proved by 
induction based on the standard continued fraction results 

A~~?, _ A~~~~~ 
II I I 

k+ I _ k kala2a3 ak+ I 

Dl Dl D l Dl 
k+ I Bk kBk+?I 

and 

kI_ k-I =(k+1 a ala a' bkl 

Bk?I Bk-I BLIBk+I 

If we now apply this change of sequence to the convergents of the Perron fraction 
(10), we obtain the sequence of Pade approximants pOk, P,k, Pl,k-l P2,k-, P2,k, 

P3,k P3 k-l p4k_ ..- The continued fraction whose convergents form this se- 
quence is 

Ckx m kx Ik 1mkx m 
k 

x Ik 
+ + + 1 + 2?k T m 3x+2K 131 +m C0 + 1X+* + I + lk - + MkX - I + lk + I + lk - + mk x 

2 2 34 44 

12J-m2j2X m2j I 1 1 .. 
I + 1?ki + I + - 1 + Mk 

By an equivalence transformation we can write this as 

(16) c0 + c x + + k I t2 52 t3X S3X t4 0 1 1 + 1 + + x+ + 1 +T+** 
where, provided that lk = 0, 

tJk -= _kl (I + lk ) 

Sk - mk (I + lk)(I + lk+ j odd, 

= l/rmk jeven. 

In terms of the coefficients generated by the alternative q-d algorithm these simplify 
to 

tjk = nk/d k, 

sk n +k dk j odd, 

n + dk 

dj kI jeven. 

The convergents of (16) form a 'battlement' sequence in the Pade table, that is of the 
form 

P,,k-,I P2,k- I P3,k-,I P4,k- I 

I I I I 
PO, k P1,k P2, k P 3k P4k 
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The even part (or contraction) of the Perron fraction (10) is the M fraction (9). Let 
us call this the first even part of the Perron fraction, in order to define the second 
even part as the continued fraction whose convergents are every second pair of those 
of (10), beginning with the third and fourth convergents. That is the convergents of 
the second even part are the 3rd, 4th, 7th, 8th, 11th, 12th,... convergents of the 
Perron fraction. This fraction is of the form 

( 1 7) c~~~kr h k2x h k h k Xr 
(17) co + . + Ckhx2 ____ hx 

and its convergents are the Pade approximants Plk, P2,k-1, P3,k P4,k-1'*... and 
they form a second sawtooth sequence whose pattern is 

P2. k- I P4. k- I 

PA,k P3Ak P5.k 

It is easily seen that the second even part of the Perron fraction (10) is the first 
even part of the continued fraction (16), and that the first even part of (16) is the 
second even part of the M fraction (10). The standard relations between the 
ceofficients of a continued fraction and those of its first even part yield the 
coefficients of (17) as 

hk = _tkSk I /S k - -nkdk j even, 

- -tI/(1 + tI) =n>/(dj> i + n ), j odd, 

gk = (I - tk)/Sjk dk j even, 

= sk/(l + tk) (n k> + djk)d>k / (nk + d>k 1) 

= djk+, j odd. 

The continued fraction (17) has recently been shown to be applicable to the solution 
of the strong Hamburger moment problem, Sri Ranga [10]. 

5. A General Continued Fraction. The continued fraction (5), namely 

CkX qkx ekx q2kx e2kx 
+ c+ **- + CkX1 1 1 

2 1 - 1 - 

or, equivalently, 

CkXk (n k?1 + dk?l) ,k?1 (18) + + + 1 I )x n2 x 

(nk+2 + dk+2)x nk+2x 

+ 1 + 1 + 

has convergents which form a staircase sequence in the Pade table, going from 
adjacent rows to adjacent columns, alternately. The table of coefficients provided by 
the rhombus rules (7) also provide the coefficients of the continued fraction whose 
convergents form any chosen path that is made up of horizontal and vertical steps, 
of any length, in the Pade table, including the special cases of row sequences 
entirely, or column sequences entirely. 
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Suppose that, after a series of horizontal and/or vertical moves through the Pade 
table, we have arrived at the approximant P,,J. We could have arrived there from 
either Pi- 1 j or P, J_ 1, and, whichever is the case, we can proceed to the approximant 

Pi+ 1 Jor the approximant Pi V+ 1. Thus there are four possibilities for the set of three 
successive convergents centered on Pi,,, and in each case the three approximants are 
connected by the numerator and denominator of the next partial quotient in our 
continued fraction. The four possibilities, and the corresponding relation are 

Case 1. 

pi - 1'J P.. X- P. +l 

P,+ l,(x) = (1 + d/'+I1x)P,11(x) + nJ+4ixP,-l (x) 

Case 2. 

P - -,J PlJ 

PJ+ 1] 

P, J+,(x) = P1,J(x) + nJ+i7xP,-,,(x). 

Case 3. 

P..J1 I 
I 

Pi,J Pi+ 1.J 
P1,1 -* 

P+}j(X =P,x () + (n/+i' + dJ1)P _() 
Case 4. 

P ,J -I 

PJ+ 

( -dj'i+,x)P,1j(x) + (nJ+ 1 + d,+,')xP,,_ I(x), j > 0, 

(I (1d,J+ lix)P,JI(X) )- d'd' dl1+1X'+1, j = O. 

In each case the numerators and denominators of the Pade approximants obey the 
relation separately. Any sequence of applications of the above steps will yield a 
continued fraction whose partial quotients are of the form Nx/(l + Dx), where N is 
always nonzero but D can be zero. Some particular sequences are 

(a) Repreated application of Case 1 with j constant and i taking the values 
0, 1, 2,.... This yields the M fraction (9) with convergents forming the (j + 1)th row 
of the Pade table [P1 lj is taken as 1/0 and nj+ =cj+x']. 

(b) Application of Cases 3 and 2 alternately yields the continued fraction (18). 

[Pi, - is taken as 0/1 when necessary.] 
(c) Repeated application of Case 4 with i constant and j 0 O initially yields a 

continued fraction whose convergents form the (i + l)th column of the Pade table. 
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For i = 0 the resulting continued fraction is 

1 d'x d x d3x 
1 + 1- dx + 1- d2x + 1- dx + 

1 c 1 X/Co C2X/C1 C3 X/C2 
1 - 1 + CX/C 1 + C2x/C1- 1 + C3X/C2- 

which is the familiar EQUIVALENT fraction for the given series (1). 
The proof of Case 1 follows from [8] while Cases 2 and 3 are simple consequences 

of a result in [7]. Case 4 then follows as a consequence of the other three cases, as is 
now shown. 

For simplicity we denote the approximant P, y by C and the other four approxi- 
mants by N, S, E and W, indicating their position relative to C in a north, south, 
east and west sense. The first three relations are, figuratively, 

(19) E = (1 + d)C + nW, 

(20) S=C+nW, 

(21) E = C + (n + d)N, 

where n and d represent ni+1"x and d,'+ ix, respectively, and of course the relations 
hold for the numerators and denominators separately. 

From (19) and (20) we see that 

(22) S = E-dC, 

and substituting for E in (21) yields 

(23) S = (1-d)C + (n + d)N 

as required. 
We can also prove Wynn's identity, 

(24) N-C + 1 C E'C + 1 NCs-C ECW-C, 
but we have to consider both the numerators and denominators of the approximants 
at the same time, and so we write E = En/Ed and a similar notation for the other 
approximants. For convenience we also write, for example, [E, C] to mean (EnCd - 

EdCn) and so on. 
Then, from (21) 

En- Cn = (n + d)Nn and Ed-Cd = (n + d)Nd, 

and hence 

[E, C] = EnCd - EdCn (n + d)(NnCd - NdCn) (n + d)[N, C]. 
It thus follows that 

(25) 1 
- 

EdCd EdCd 
E-C [E,C] (n + d)[N,C] 

Similarly, from (20), 

(2)1 Sd Cd 
(26) S n W C 
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The equations (19) and (21) combine to give 

w-c (N-C), n 

and from this we obtain 

(27) [W, C] = [N, C]. 

Thus 

(28) 1SdCd 
S- C (n + d)[N, C] 

and 

(29) 1nfWd Cd 
W-C (n + d)[N, C] 

Finally, 

1 _ NdCd 

N-C [N, C] 
and so 

1 1 _ 1 _ 1 
+ E-C W-C S-C N-C 

-n + Cd [ C Ed + nWd -Sd -(n + d)Nd}. 
(n + d)[N, C] 

But (20) subtracted from (21) gives 

Ed- Sd = (n + d)Nd -nWd, 

and the proof is complete. 
Baker's algorithms (see [1]) for computing the elements of the Pade table are 

an-Il,m+ lXpn- l,m 
n,m n-l,m+l an-1,m 

and 
a 

an-I,mPn anm Pn-l,m 

pnM I, 
an-I,m an,m 

where aij is the leading coefficient of the numerator of P1 j and, once again, the 
numerators and denominators of the Pade approximants obey the rules separately. 
From (22) we find 

E - S + dC, 

and identifying this with the first of Baker's algorithms, that is setting C to be 

Pn- lm, yields 

dm?l - 
an-l,m+I 

an-I m 

Then, by equating (19) and (21), we obtain 

N = +d C + d W 
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and identifying this with the second of Baker's algorithms, that is setting C to be 

PI,,,, yields 

nfl?+? a dm ?I - 1 a 
__ _ 

n+1__ _ _ - n m n+1 an-lm 

nnl+I djm?I a -a ' M+1 ,mI a - 
n1+ +dn?l n n-I,m am lnn+1 + dm+l an-I,m -an,m 

or 

1+?_ a,7 md2 n - _n anm+_ 

n,,+,~ ~ ~ ~ I n~~~n _ _ a n-I s1 

since 

dml+1l -asls1+l/s a 
A study of Gragg's algorithm, see [4], which computes the elements lying on an 

ascending staircase in the Pade table, shows that the continued fraction involved is 
that which results from using the relations 

E = S + dC 

and 

N= +d(C+ W), 

alternately. 
The continued fraction (17) provides relations between approximants that occupy 

the relative positions SW, C and SE in the Pade table, while the even contraction of 
the continued fraction (18), namely an associated continued fraction of the form 

C Xk ukx2 ukx2 
C+ UkX + 1 VkX + U V3X+ 

has convergents which form a diagonal or off-diagonal of the Pade table. It should 
be a simple process to allow our general continued fraction to travel in north- 
easterly or south-westerly directions in the Pade table. 

6. Stability. It is well known that the quotient- difference algorithm can be 
unstable, the problems arising because of the formation of differences in the 
q-columns. Rutishauser [9] provides some examples demonstrating instability. 
Gargantini and Henrici [3] studied the stability problem when the algorithm is used 
to calculate the coefficients of continued fractions, and they tried several possible 
approaches to overcome instability, only one of which was successful to any extent. 

It is inevitable that the stability problems will also arise when the above modified 
quotient-difference algorithm is used, the equations (13) linking the two algorithms 
indicate that this will be the case. 

Recently however a method of performing the arithmetic of the quotient-dif- 
ference algorithm without the tendency to amplify the errors has been given by 
Stokes [11]. The same approach can be used on the modified algorithm, and Stokes 
demonstrates his method by applying it to the calculation of continued fraction 
coefficients. In particular, he uses it to produce continued fractions approximating 
series expansions for a function about two points. From the remarks in the final 
section of this paper it will be seen that this is a particularly relevant application. 
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7. Examples. As a first example, consider the series expansion 

I 2 + 3 5X 

V(1+ 2x) - 1+x- +2 _SX 

+ + (_ 3k 5 I 1 *3 5 (2k 3)xk + 
k! 

The initial part of the n-d array is 

1 , 2 d2 n3 d3 j 
1 -1 3/2 -3/2 5/3 -5/3 
2 1/2 1/2 -1/3 5/6 -3/4 
3 1 1/4 1/4 1/2 -1/5 
4 5/4 3/20 3/5 
5 7/5 

In this case the coefficients can be expressed explicitly by 

dJ --(2j - 2i + 1)(2j - 2i - 1) 

A X2j - 1) - (i - 1)(2i - 1) 

and 

nX _ _ (2j -2i + 1)(2j- 2i + 3)(i-1)(2i- 1) 

" {j(2j- 1) - (i- 2)(2i - 3)}{j(2j- 1) - (i- 1)(2i - 1)) 

It is easily verified that, when j = 1, 

1 1-2i d' - -nl = - - 
i 

An example of a family of power series, for which just over half of the elements of 

the n-d array can be expressed explicitly, is the hypergeometric series 

2F1(1 X;1+o-) I () 

r0 (1 + O) 

were X is not a negative integer. The series is absolutely convergent if j z j< 1, 

divergent if I z I > 1, while if I z 1 the series converges absolutely if X > 1. 

The elements on and below the staircase formed by coefficients dk, nk +l for 

k = 1, 2, 3,.. ., are given by 

d!. +j 1 joii ,,,. 
X+ i+J- 

and 

_ (i l)i 1 ~ -j) j I- 1 i -234.. 
1 (1 + i + j-2)(w + i +j-1) 2 

It does not appear possible to express the remaining coefficients in such a way 

except for particular values of X and w. 
As a final example, consider the function 

F(x, p) = e-xPXetP dt, x > O,p > 0. 
0 
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This is a generalization of Dawson's integral, obtained when p = 2, which occurs 
in various branches of physics. Setting u = xP and a I/p allows the expansion of 
F(x, p) as the convergent series 

F(x, p) =x (Iu)k 
k-O (1 + )k 

The starting values for the n-d array are thus dJ - l/(j + a). For p - 2 the 
initial part of the n-d array is 

j d 2 d2 3 d3 

1 2/3 -4/15 4/15 -2/21 2/21 
2 2/5 -4/35 2/7 -8/63 16/45 
3 2/7 -4/63 2/9 -8/99 2/11 
4 2/9 -4/99 2/11 
5 2/11 

One of the continued fractions that is obtainable for Dawson's integral is thus 

F(X,2) = xl 2x 2/3 4x2/15 6x2/35 1 I 1 + 1I 

whose convergents form the main staircase of the Pade table of the series expansion. 
The function F(x, p) also has the divergent asymptotic expansion at the point at 

infinity 

00 

F(x, p) - ax : (1 - a)r/Ur+l U = xp x. 
r=O 

The alternative form of the quotient-difference algorithm can be used to generate 
the coefficients of continued fractions which correspond to both series expansions 
simultaneously, and whose convergents are the so-called two-point Pade approxi- 
mants. These rational functions are discussed briefly in the next section. An example 
of such a continued fraction expansion is 

F(x, P) ax u 2u 3u 
a + x - a + I - u - a + 2 + u - a + 3 + u - 

Details of the properties of this expansion when p = 2 are given in [7]. 

8. The Two-Point Pade Table. The alternative form of the quotient-difference 
algorithm (7) first arose out of a study of the continued fractions associated with the 
two-point Pade table, the points being the origin and the point at x. See [7] for 
details. Briefly, suppose, in addition to the series (1), we also have the series 

(30) k bk b 0, 
k=1 X 

in which for some N 1, bk = 0 for all k > N. Set d?? = co/bI and dT ' =-bjlbj+I 
forj= 1, 2,...,N- 1, and then use the rhombus rules (7), with d`-> -n -NN 

= 2, 3,..., to generate the coefficients n and di, i = 2, 3,4,..., j = 1 - N, 
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2 - N ... , , 1,2. The r th convergent of the continued fraction 

c k nk nk 
(31) co+Cl+0 1 I+dkX + I +dkx+ I +d x 

k 

+ I + d kX + 

is a rational function which agrees with (r + k) terms of (1) and (r - k) terms of 
(30) when expanded accordingly. It is easily established that, for k > 0 and r < k, 
the r th convergent of (31) is the Pade approximant Pr k- 1 for the series (1). In the 
special case k= 0, the r th convergent of (31) is a ratio of polynomials of degrees 
(r - 1) and r, respectively; it agrees with r terms of each of the series (1) and (30) 
when expanded accordingly. Such continued fractions have been used by Thron, 
Jones and Waadeland [6] to solve the strong Stieltjes moment problem. 

For 0 < k < N the r th convergent of the continued fraction 

(32) ~b+ b bk/xk n-kx n-kx 
X 2 kl+ kX+ 

2 
3ld~x 

x X2 1 + d -kx + I + d -kX + I + d -kX + 

agrees with (r + k) terms of (30) and (r - k) terms of (1) when expanded accord- 
ingly. 

Finally, it is easily seen that the table of coefficients 

d,(N- I) 2(N- 1) .-(N-I n-(N- 1) 

d, (N-2) nf(N-2) d-(N-2) n-(N- 2) ... 

do n2 d3 nha t 

in which d. -}= -n,(-,i= 2,3, . .., has the same relation to the Pad'e table 

for the series 

j0 J bN{z + bN,,_x + **+b, XN-1l_ cj xj+N} 

as the table in Figure 3 has to the Pade table for the series Fj=o c1xJ. That is, for N 

finite, the two-point Pade table for the two series is the Pade table for the sum of the 

two series. 
When N is not finite the rhombus rules (7) are used to provide the coefficients of 

(31) and (32) for all k > 0. The convergents of these continued fractions are the 
elements of the doubly infinite two-point Pade table for the series. All the previous 
continued fraction expansions relate to the two-point Pade table and have the 

described paths through it. The correspondence properties of these expansions with 
the two series follow from the structure of the two-point Pade table, described in [7]. 
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