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The Quotient-Difference Algorithm and the
Padé Table: An Alternative Form
and a General Continued Fraction

By J. H. McCabe

Abstract. The quotient-difference algorithm is applied to a given power series in a modified
way, and various continued fractions provided by the algorithm are described in terms of their
relationships with the Padé table for the power series. In particular a general continued
fraction whose convergents form any chosen combination of horizontal or vertical connected
sequences of Padé approximants is introduced.

1. Introduction. In [4] Gragg gives a substantial review of some of the properties of
the Padé table for a given power series 2% ¢, x* and the relations between Padé
approximants and other areas of numerical analysis. The earliest and, as Gragg
suggests, perhaps the most significant of these related areas is the theory of
continued fractions. In particular it is the so-called corresponding fractions for the
power series that then provide the link between the Padé table and the quotient-dif-
ference algorithm of Rutishauser. One of the many applications of the quotient-
difference algorithm is to obtain the coefficients of the corresponding fractions from
those of the power series, and the convergents of these continued fractions form
staircases in the Padé table for the series.

In this paper the quotient-difference algorithm is taken in a form that is slightly
different from the usual and is then used to provide, very simply, the coefficients of
six types of continued fractions whose convergents form ordered sequences of Padé
approximants, including those mentioned above. It is then shown that the table of
coefficients generated by the revised quotient-difference algorithm also provide the
partial numerators and denominators of a ‘general’ continued fraction whose
convergents are a sequence of Padé approximants that is made up of any chosen
horizontal or vertical connected subsequences. This freedom in choosing the path in
the Padé table means that some of the existing algorithms based on particular paths
can be regarded as special cases of the revised quotient-difference algorithm. Two
such instances are described.

The revised quotient-difference algorithm used in this paper is essentially the
algorithm that has already been used to construct the continued fractions whose
convergents form the so called two-point Padé table for two given power series, the
only difference being the necessity for an additional rule for defining certain
coefficients in the absence of a second series. However, by looking at the case where
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184 J. H. McCABE

some coefficients of a second series are available we see in the final section that the
two point Padé table for two series is, in a sense, a limiting case of the usual Padé
table for the sum of the two series.

2. The g-d Algorithm and the Padé Table. The Padé table [see Figure 1] of the
formal power series

oC
(1) f(x) = 2 axb, ¢ #0,
k=0
is an infinite two-dimensional array of irreducible rational functions

(2) P,,‘m(x) _% +ox+ - Fa,x”

1+ Bx+ - +Bx" "’

m,n=0,

in each of which the coefficients are such that the expansion of P, ,(x) in powers of
x agrees with f(x) as far as possible. The power series, and its associated Padé table,
are said to be normal if, for each m and n,

m+n

P, .(x) = 3 c¢,x*+ higher order terms.

k=0
In this case every element of the table exists and differs from any other, and both a,,
and B, are nonzero. A sufficient condition for the series to be normal is that the
determinant

Crs+1 Cres+2 U ¢,
Cr—s+2 cr—x+3 T Crtl
¢, U Cris—1

is nonzero for all r and s, with ¢, = 0 if k < 0. We will assume that the series (1) is
normal.

Po.o PI,O Pz.o P3.0 T Pn,()
PO.I Pl.l Pz,l P3,1 Pn,]
Po.z Pl,z Pz.z Pa.z T Pn.2
PO.m Pl.m P2,m P3,m e Pn,m

FIGURE 1. The Padé table
The relationships between the Padé table for the series (1) and various continued
fractions that correspond to the series are well known. There are many algorithms
for constructing continued fractions whose convergents form ordered sequences in a
normal Padé table. Perhaps the most fundamental of these is the quotient-difference
algorithm of Rutishauser.
The coefficients of the series are used to provide the starting values

(3) q{ = Cis1/Cs J=0,
for the recurrence relations

(4a) e/ =e/f + g/ —q/ i=0,1,2,...,
(4b) ql =g/ welT s el
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where ej = 0 for all values of j. These rhombus rules allow the calculation of those
elements of the g-d array on and below the diagonal with zero superfix, see Figure 2.

q) 4" 95>
e} e;'

q q5 '
el e3

qi 9 a5
et 2

q; 4 4
e e;

qt a3
e}

5

qi

FIGURE 2. The g-d array

The staircase sequence of Padé approximants Py ., Py i, Py xi1s Pogs 1> Pokar-- s
are the successive convergents of the continued fraction

oxk  gix  efx  gix  efx  gsx

1 -1 -1 -1-1-1-""
for k=0,1,2,3,---. The convergents of all these fractions thus provide those
elements of the Padé table on and below the first upper para-diagonal. The

remaining elements are the convergents of the continued fractions, of the form (5),
that correspond to the reciprocal series of (1), i.e. series 22_, ¢, x*, where

($oe)($60)

The coefficients of these continued fractions, §/ and &/, can be obtained by first
extending the g-d array for (1) to negative values of j by using (4) and then

(6) q0 = -4y,

7= el j= gl
q;i = €i+j—1» ¢/ = qi1/,

(5) cotox+ -+

where the indices can take all values for which at least one of the elements involved
is defined. These relations are given by Henrici [5]. Thus the ¢-d algorithm (4) can
provide continued fractions which in turn yield all the elements of the Padé table.

3. An Alternative Form of the g-d algorithm. Set d{ = ~c;/c;—y forj=1,2,,...,
and use these ratios as starting values for the rhombus rules

(7a) nig =n{tt+aj*t —df i=1,2
(7b) dij+I:n,j+]*dij_]-Z—n'[ ’ J s hyeeny
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fori =1,2,3,..., with n{ = 0 for all j and
(8) dl = _n}’

1

fori = 2,3,4,.... The elements generated form the n-d array shown in Figure 3.
di ny dy ny dj
di n3 di ni di

i ny dy ny 43

FIGURE 3. The n-d array
The convergents of the continued fraction

k k

CpX nkx nkx

9 coteox+ -+ =
©) 0o 1+dkx + 1+ dkx + 1 +dbx +

)

k=1,2,3,..., are the Padé approximants P, ;,_, P, 4y, Py 4y, P4s—y,..., thatis
those on the (k — 1)th row of the Padé table. Continued fractions of the form (9) are
called M fractions for the series (1).

The above properties, with the exception of (8), follow from [8], where the even
extensions of (9) are considered. The continued fraction (9) is the even part of

k k k k k k
Cp X mix I3 mi5x I  m5x

1 + 1 +1+ 1 414+ 1 + 7
whose coefficients can be obtained by the further set of rhombus rules,

(10)  cptoex+ -+

(11a) mi*x 7' =l s«miZ],

(11b) (1 + ) »mit) =1+ 1)) xmf_,
fori, j=1,2,..., with { =0, m{ = —¢;/c;_,,j = 1,2,..., and
(12) m}=%, i=2,3,....

See McCabe [8] for details. The continued fractions (10) are, in [8], called Perron
fractions for the series (1), and the convergents of (10) are the sequence Py ;, P ;_,
Py Py 1y Pyyy Py gy, Py, .. in the Padé table.

The coefficients of the corresponding fractions (5), (9) and (10) can of course be
expressed in terms of each other. Specifically

(13a) ni = e/t
(13b) dj =e/f 7" —q/™
fori, j=1,2,3,..., and
_ni
(14a) ="
(ni+di))
(14b) my = G
(nf +di-\)

fori, j=1,2,3,....
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Substituting for /], m}_, and /]_| from (14) in (12) yields

1 g1
—nid;_,

1
i 1 1
n; +d;_,

m:

K

and equating this to (14b) with j = 1 gives the result (8). The alternate version of the
g-d algorithm, as given by Eqgs. (7), was first obtained in a study of two-point Padé
approximations by McCabe [7]. The rhombus rules (11) were also given by Busson-
nais [2].

The relations (13) are such that many of the characteristics of the quotient
difference algorithm are retained by the alternate form. In particular the conver-
gence of the n columns of the n-d table to zero and of the d columns to the inverse
poles of f(x), multiplied by -1, will result if the columns of the g-d array converge to
zero and to the inverse poles of f(x), respectively.

4. Two Further Continued Fractions. The convergents of the three forms of
continued fraction encountered so far form, respectively, staircase sequences, row
sequences and ‘sawtooth’ sequences in the Padé table, the latter being of the form

Pl,k—l P2,k-—l P3,k—-1 P4,k—l
/l AT /¢ / y /
PO,k Pl.k P2,k P3.k P4,k

for some k.

Two additional continued fractions whose convergents form ordered sequences in
the Pade table can be obtained by a simple re-ordering of the convergents of the
Perron fraction (10). We have the following general result.

Let the convergents of the continued fraction

4 4 4 44 a5
(15) T+ T +1+1+1+

be A,/B,, A,/B,, A;/B;,..., and let the continued fraction whose convergents are
those of (15) with the (4k — 1)th and (4k — 2)th convergents interchanged for all
k = 1, that is the sequence

be
1 1 1 1
R R T .
1 1 1 1 :
B+ B+ B+ B+
Then a} = a,, b} = 1 and
1 - 1 =
Qa3 = ~Q4p—3845-4> by—3=1+ay 3, k>1,
1 — 1 —
A4k—2 = Qak—2> by =1+ agy_,, k=1,
1 — |
Agp—1 — —A4p—1> by =1, k=1,

- 1
ay =1, by = ag, k=1.
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The left-hand relations imply that

[ s L
Qa " Qak—1 ak—2 Qap-3 = Qa— 104k 292k —39 254

for k =2,3,..., while ajaia}a} = —aja,a,. These relations are easily proved by
induction based on the standard continued fraction results
f‘_l}(i . 1_415 _ (_)ka{alzag g
By By BBy,
and
M . h _ (_)k+l a:‘llz e a/l<b}<+1
Bll<+] B}(-l BI]<—IBII<+I

If we now apply this change of sequence to the convergents of the Perron fraction
(10), we obtain the sequence of Padé approximants Py, P, ., P, ,_, Py sy, Poys

Py, Py, Pyy_y,.... The continued fraction whose convergents form this se-
quence is
oxk omix Ik 1 LKmkx  mix Ik 1

e e e T T 7 Sy

k k k k
l3,-imy,—ox  my,_x I3, 1

R I LR I (R e L

By an equivalence transformation we can write this as

xk skx o tf sk tix skx

1 + 1 +1+x+ 1+ 1 +1+

k
1

(16) ¢y tex+---+
where, provided that /f = 0,
th=-1ky(1+1%),
sk=m/(1+15)(1+1%,), jodd,
=1/m¥,  jeven.

In terms of the coefficients generated by the alternative g-d algorithm these simplify
to

k — ok s 1k
1 =n;/d_,,
sj"=nj.‘+1 +dj", jodd,
nk +dk | ‘
:—‘;;d—k'—', J even.
71

The convergents of (16) form a ‘battlement’ sequence in the Padé table, that is of the
form

Pl,k—l - P2,k—1 P3,k—1 - P4,k—1



QUOTIENT-DIFFERENCE ALGORITHM AND THE PADE TABLE 189

The even part (or contraction) of the Perron fraction (10) is the M fraction (9). Let
us call this the first even part of the Perron fraction, in order to define the second
even part as the continued fraction whose convergents are every second pair of those
of (10), beginning with the third and fourth convergents. That is the convergents of
the second even part are the 3rd, 4th, 7th, 8th, 11th, 12th,... convergents of the
Perron fraction. This fraction is of the form

cpxk h&x? h¥% h%x?

17 co+ e+
(17) 0 1+gix T l+ghxt1+ghx+t1+gkx+

and its convergents are the Padé approximants P, ,, P, ,_, Py, Pyj—;...., and
they form a second sawtooth sequence whose pattern is
Py Py
7 N 7 N
Py 4 Py Ps

It is easily seen that the second even part of the Perron fraction (10) is the first
even part of the continued fraction (16), and that the first even part of (16) is the
second even part of the M fraction (10). The standard relations between the
ceofficients of a continued fraction and those of its first even part yield the
coefficients of (17) as ‘

hE = —tfst sk =-nkdF,  jeven,
= th/(1+ 1k )——n"/( 4+ nk),  jodd,
gJ"I(l -1 )/s"—d" Jj even,
=sk/(1+15) = (nky, + d¥)di / (n* + d )
=dj"+‘, Jj odd.

The continued fraction (17) has recently been shown to be applicable to the solution
of the strong Hamburger moment problem, Sri Ranga [10].

5. A General Continued Fraction. The continued fraction (5), namely

k k k k k
C,. X X erx X €5y X
R R -

or, equivalently,
xk (T 4+ dft)x opktix
1 + 1 + 1
(n5* 2+ d5k*?)x  nk*2i
+ 1 + 1 +
has convergents which form a staircase sequence in the Padé table, going from
adjacent rows to adjacent columns, alternately. The table of coefficients provided by
the rhombus rules (7) also provide the coefficients of the continued fraction whose
convergents form any chosen path that is made up of horizontal and vertical steps,

of any length, in the Padé table, including the special cases of row sequences
entirely, or column sequences entirely.

(18) Coteox+ -+
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Suppose that, after a series of horizontal and /or vertical moves through the Padé
table, we have arrived at the approximant P, . We could have arrived there from
either P,_, ;or P, _,, and, whichever is the case, we can proceed to the approximant
P ., , or the approximant P, ;. Thus there are four possibilities for the set of three
successive convergents centered on P, , and in each case the three approximants are
connected by the numerator and denominator of the next partial quotient in our
continued fraction. The four possibilities, and the corresponding relation are

Case 1.
Pl—l.j - P,j - P1+],j

!

P,+|,J(x) = (1 + dljrllx)P:.,(x) + n{:llxpl—l.j(x)

Case 2.
Pl—l.j - 1y
l
P1.1+1
P:.,+|(x) = P.,,(x) + ”:j:llxp.—l‘,(x)-
Case 3.
Pl.j;‘]
P:./ - Pz+1_,
P:+l.j(x) = Pl.j(x) + (”{11‘ + d/fll)xp,,j—l(x)-
Case 4.
PI.]*I
l
P,
l
Pl.j+l

Pl.j+|(x) = (1 - d{rllx)Pz‘j(x) + (”{:ll + dII:]])xI)l,/—l(x)’ Jj>0,
:(1 _dlj':—llx)l)l.j(x)_dlld%"'dl]+lx’+ls j:O

In each case the numerators and denominators of the Padé approximants obey the
relation separately. Any sequence of applications of the above steps will yield a
continued fraction whose partial quotients are of the form Nx/(1 + Dx), where N is
always nonzero but D can be zero. Some particular sequences are

(a) Repreated application of Case 1 with j constant and i taking the values
0,1,2,.... This yields the M fraction (9) with convergents forming the (j + 1)th row
of the Padé table [P_, ; is taken as 1,/0 and n{"' = ¢;,x’].

(b) Application of Cases 3 and 2 alternately yields the continued fraction (18).
[P, _, is taken as 0/1 when necessary.]

(c) Repeated application of Case 4 with i constant and j = O initially yields a
continued fraction whose convergents form the (i + 1)th column of the Padé table.
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For i = 0 the resulting continued fraction is

1 dlx dix dix .
l+1—dlxt1—-dixt+t1-dixt
cx/c, Cx/c, c3x /¢

1
Tl =14 ex/cg— 1+ exjfe, — 1+ ex/c, —
which is the familiar EQUIVALENT fraction for the given series (1).

The proof of Case 1 follows from [8] while Cases 2 and 3 are simple consequences
of a result in [7]. Case 4 then follows as a consequence of the other three cases, as is
now shown.

For simplicity we denote the approximant P, by C and the other four approxi-
mants by N, S, E and W, indicating their position relative to C in a north, south,
east and west sense. The first three relations are, figuratively,

(19) E=(1+d)C+ nW,
(20) S=C+nW,
(21) E=C+ (n+d)N,

where n and d represent n/; |x and d/}x, respectively, and of course the relations

hold for the numerators and denominators separately.
From (19) and (20) we see that

(22) S=E—dC,
and substituting for E in (21) yields
(23) S=(1—-d)C+(n+d)N

as required.
We can also prove Wynn’s identity,

1 1 1 1
24 + =
(24) N-C S-¢C E—C+W—C’
but we have to consider both the numerators and denominators of the approximants
at the same time, and so we write £ = E,/E, and a similar notation for the other
approximants. For convenience we also write, for example, [ E, C] to mean (E,C, —
E,C,) and so on.

Then, from (21)
E,—C,=(n+d)N, and E,— C,=(n+d)N,,

and hence
[E,.C]=EC,— E,C,=(n+d)(NC,— N,C,) =(n+d)[N,C].
It thus follows that

(25) 1 E,., E,C,

E—C [E,C] (n+d)[N,C]

Similarly, from (20),

1 S,C,
26 = .
(26) S—C na[w,C]
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The equations (19) and (21) combine to give

W—c=”:QN—cL
and from this we obtain
(27) [ijznjﬂny
Thus
1 S,C,
28 = ,
(28) S=C_ (n+d)[N.C]
and
1 nW,C,
29 = .
(29) W—C_ (n+ d)[N.C]
Finally,
1 _ NGy
N—-C [N, C]’
and so
1 + 1 11
E-C wW—-C S—-C N-C
G

:m {Ed+an_Sd_ (n +d)Nd}

But (20) subtracted from (21) gives

and the proof is complete.
Baker’s algorithms (see [1]) for computing the elements of the Padé table are

Ayt mt1XPy1m

P :Pn—l,m-H_

n,m

an—l,m
and
P _ an—l,mPn,m - an,mPn—l,m
n,m—1 — a —a
n—1,m n.m

where a,; is the leading coefficient of the numerator of P, ; and, once again, the
numerators and denominators of the Padé approximants obey the rules separately.
From (22) we find

E=S+dC,
and identifying this with the first of Baker’s algorithms, that is setting C to be
P,_, ., yields
gr+l = _Gnmime1
" Ay—1,m

Then, by equating (19) and (21), we obtain
d

_ n
N=FaC asa”
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and identifying this with the second of Baker’s algorithms, that is setting C to be
P, .., yields

n,

m+1 m+1
nn+l — an.m dn+] — an—].m
+ + — ’ + + —
nZ’H' + d,:n+|l an—],m an,m n,,'"+|' + d,:"+|l an—l,m an.m
or
m+1
m+1 — an.m n+1  __ an,m+l
Npvr — — a - a
n—1l,m n—1,m
since
m+1 —
dn+| - —an.m+l/an.m‘

A study of Gragg’s algorithm, see [4], which computes the elements lying on an
ascending staircase in the Padé table, shows that the continued fraction involved is
that which results from using the relations

E=S+dC
and

n

N:n+d

(C+w),

alternately.
The continued fraction (17) provides relations between approximants that occupy
the relative positions SW, C and SE in the Padé table, while the even contraction of

the continued fraction (18), namely an associated continued fraction of the form
cpxk ukx? ukx?

1+u,"x+1+v§x+l+v§x+.“

cteox+ -+

has convergents which form a diagonal or off-diagonal of the Padé table. It should
be a simple process to allow our general continued fraction to travel in north-
easterly or south-westerly directions in the Padé table.

6. Stability. It is well known that the quotient-difference algorithm can be
unstable, the problems arising because of the formation of differences in the
g-columns. Rutishauser [9] provides some examples demonstrating instability.
Gargantini and Henrici [3] studied the stability problem when the algorithm is used
to calculate the coefficients of continued fractions, and they tried several possible
approaches to overcome instability, only one of which was successful to any extent.

It is inevitable that the stability problems will also arise when the above modified
quotient-difference algorithm is used, the equations (13) linking the two algorithms
indicate that this will be the case.

Recently however a method of performing the arithmetic of the quotient-dif-
ference algorithm without the tendency to amplify the errors has been given by
Stokes [11]. The same approach can be used on the modified algorithm, and Stokes
demonstrates his method by applying it to the calculation of continued fraction
coefficients. In particular, he uses it to produce continued fractions approximating
series expansions for a function about two points. From the remarks in the final
section of this paper it will be seen that this is a particularly relevant application.
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7. Examples. As a first example, consider the series expansion
2 3

— x? x> 5x*
(1+2x)—1+x ?4‘7 —8—-

ko1 1-3-5 - (2k — 3)x*

+-- 4+ () o + ..
The initial part of the n-d array is

J di n; d3 n3 4
1 -1 3/2 -3/2 5/3 -5/3
2 1/2 1/2 -1/3 5/6 -3/4
3 1 1/4 1/4 1/2 -1/5
4 5/4 3/20 3/5
5 7/5

In this case the coefficients can be expressed explicitly by
S — 2j—2i+1)2j—2i—1)
iD= G-DEi-)

and
Qj—2i+1)Q2j—2i+3)(i—-1)2i—1)
(@ji—1D) - (=2)2i=3){j2j-1) - G- DQ2i-1}

It is easily verified that, when j = 1,

J =
n,

1—2i

dl = -n' =—
i

l

An example of a family of power series, for which just over half of the elements of
the n-d array can be expressed explicitly, is the hypergeometric series

Al 4wz =S —Ae
s NS w,-z)= 5 \7Z),
2 r=0 (1 + (0),.
were w is not a negative integer. The series is absolutely convergent if |z|<1,
divergent if | z|> 1, while if | z|= 1 the series converges absolutely if w > 1.

The elements on and below the staircase formed by coefficients df, nf,, for
k=1,2,3,..., are given by

Atj—1

,j:—————-———— =i i= .
dl w+l+j‘_1, j lal 1,2,3, )

and

i = G-1D(i—-1+w—))

(e titji—20(et+iti—1)]
It does not appear possible to express the remaining coefficients in such a way

except for particular values of A and w.
As a final example, consider the function

j=i—1,i=2,3,4,....

p x P
F(x,p)=e"‘/0e’ dt, x=0,p>0.
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This is a generalization of Dawson’s integral, obtained when p = 2, which occurs
in various branches of physics. Setting u = x? and « = 1/p allows the expansion of
F(x, p) as the convergent series

)k

Fxop)=x 3 G0

The starting values for the n-d array are thus d{ = 1/(j + a). For p = 2 the
initial part of the n-d array is

J d{ nb a3 n4 df
1 2/3 —4/15 4/15 ~2/21 2/21
2 2/5 ~4/35 2/7 ~8,/63 16,/45
3 2/7 -4/63 2/9 -8,/99 2/11
4 2/9 -4/99 2/11

5 2/11

One of the continued fractions that is obtainable for Dawson’s integral is thus

x  2x*/3 4x*/15  6x?/35
I+ 1 - 1 + 1 - 7

F(x,2) =

whose convergents form the main staircase of the Padé table of the series expansion.
The function F(x, p) also has the divergent asymptotic expansion at the point at
infinity

e}
F(x,p)~ax 2 (1—a),/u™", u=x"- .
r=0
The alternative form of the quotient-difference algorithm can be used to generate
the coefficients of continued fractions which correspond to both series expansions
simultaneously, and whose convergents are the so-called two-point Padé approxi-
mants. These rational functions are discussed briefly in the next section. An example
of such a continued fraction expansion is
ax u 2u 3u

Flx, P)_a+x—a+1—u—a+2+u—a+3+u—
Details of the properties of this expansion when p = 2 are given in [7].

8. The Two-Point Padé Table. The alternative form of the quotient-difference
algorithm (7) first arose out of a study of the continued fractions associated with the
two-point Padé table, the points being the origin and the point at co. See [7] for
details. Briefly, suppose, in addition to the series (1), we also have the series

(30) 2~ b #0,
in which for some N =1, b, = 0 for all k > N. Set d{ = ¢,/b, and d;’/ = b/

for j=1,2,...,N — 1, and then use the rhombus rules (7), with d, i- N = _pl™N,
i=2,3,..., to generate the coefficients n/ and d/, i =2,3,4,..., j=1—N,
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2 —N,...,0,1,2,.... The rth convergent of the continued fraction

e xk nkx nkx
31 coFox+ o —X : 3
(3 o 1+dkx + 1+ dbx + 1+ dhx
k
n
_MaX - k=0,
+1+dix +

is a rational function which agrees with (r + k) terms of (1) and (r — k) terms of
(30) when expanded accordingly. It is easily established that, for k >0 and r <k,
the rth convergent of (31) is the Padé approximant P, , _, for the series (1). In the
special case k = 0, the rth convergent of (31) is a ratio of polynomials of degrees
(r — 1) and r, respectively; it agrees with r terms of each of the series (1) and (30)
when expanded accordingly. Such continued fractions have been used by Thron,
Jones and Waadeland [6] to solve the strong Stieltjes moment problem.
For 0 < k < N the rth convergent of the continued fraction

(32) 2‘.4_22._}. e — bi/x* ny'x n3tx
x  x? 1+d*x T 14+d;*x T 1+ds*x +

agrees with (r + k) terms of (30) and (r — k) terms of (1) when expanded accord-
ingly. '
Finally, it is easily seen that the table of coefficients
dl-(N_l) nE(N_l) dz—(N‘l) "I;{N_l)

dl-(N—Z) nE(N—2) dz—(N‘Z) n;(N—2)

0 0 0 0
d; ny d, n;
1 I I 1
d, ny d, n;

"in which d; (V"D = —p(N=D j =23, ., has the same relation to the Padé table
for the series

1 ad .
-b—{bN +by_x+ o HbxNT =Y cjxf”’}
N j=0

as the table in Figure 3 has to the Padé table for the series 2%, ¢;x’. That is, for N
finite, the two-point Padé table for the two series is the Padé table for the sum of the
two series.

When N is not finite the rhombus rules (7) are used to provide the coefficients of
(31) and (32) for all kK = 0. The convergents of these continued fractions are the
elements of the doubly infinite two-point Padé table for the series. All the previous
continued fraction expansions relate to the two-point Padé table and have the
described paths through it. The correspondence properties of these expansions with
the two series follow from the structure of the two-point Padé table, described in [7].
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